Natural Gas Vehicles In Hazard Classification Areas

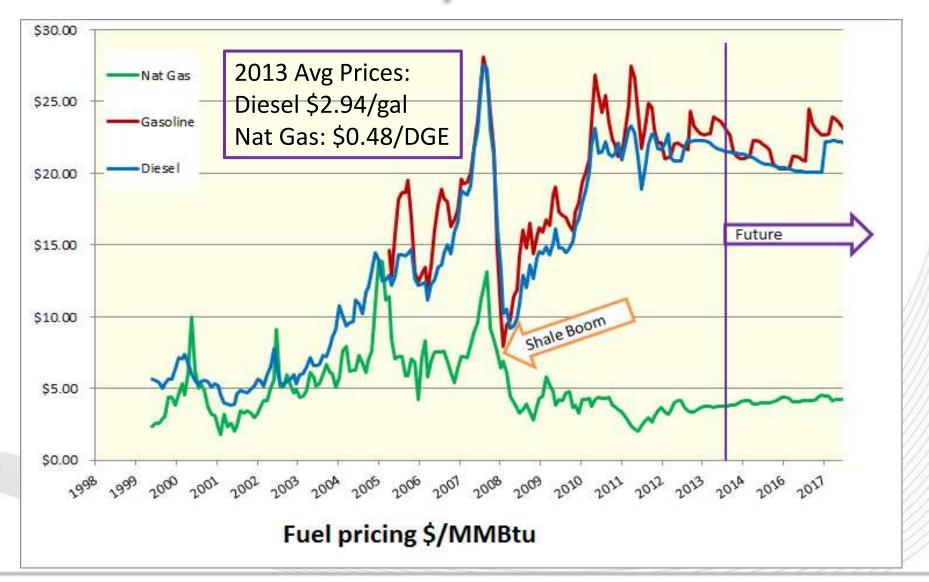
Ira G. Pearl
President – Mansfield Energy Partners

Natural Gas Vehicles Task Force Meeting
January 14, 2014

Who Is Mansfield?

- Supplying, Servicing, and Delivering over 3 Billion Gallons per year (200k bbls a day) one truck load at a time
- Fuel Supply, Distribution, and Delivery in 50 States and Canada
- Ranked by Forbes as #41 of the Top 100 privately held companies in America
- Recognized Innovator
 - Multi-Finalist in 2008, 2009, 2010, 2011
 Platts Global Energy Awards
 - Ranked in CIO 100
 - InformationWeek 500, Ranked #1 in Energy and Utilities

"The largest non-major in the delivered commercial fuel space."
Tom Kloza, Chief Oil Analyst, OPIS



Developer of Natural Gas Fueling Infrastructure

Serving Bulk Fuel Hauling vertical of the Class 8 Trucking Industry

Natural Gas as a Transportation Fuel

NGV Market in the US - Next Vertical = ?

Total US Market NG Transportation = 275 million gallons 2013

2014 Projected 10 to 13% of Class 8 Truck Build

Almost doubles 2013 NG fuel consumption
UPS Ordered 720 LNG Trucks
100% of their long haul 2014
Order

Mansfield Fuels. Simplified.

The best opportunities for conversion to NG

- 1) High fuel consumption:≥ 7,000 gal/yr
- 1) Return to base operations
- 2) Existing natural gas to site
- 3) Routes of < 350 Miles
- 4) ≥ 20 vehicles to base load station investment
- 5) Suitable engine available and supported by OEM's

Bulk Fuel Hauling

Hazard Locations

National Electrical Code (NEC)

Areas "where fire or explosion hazards may exist due to flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers or flyings."

Many Class 8 Tractor-Trailers Operate in Areas Classified as Hazard Locations

Class I, Div. 2 Fuel Rack Challenge

- ILTA members starting looking for input in 2012
- Longstanding ban on Spark Ignited (SI) Engines under Fuel Racks for some Terminals
 - Dates back 30+ years
- Buckeye Existing procedures banned SI engines including CNG Tractors
- ILTA feedback and input
- CVEF-led coalition / White Paper

CVEF - NGVs at Petroleum Terminals

Natural Gas Vehicle Compatibility with Operations at Liquid
Petroleum Fuel Terminals

Prepared by:

Clean Vehicle Education Foundation July 2013

Inly 2013

Relevance Across Many Industries

This is not just an issue in the Fuels Transportation Industry

Hazardous Location Classifications

Class I - Gas or Vapor

Class II - Dust

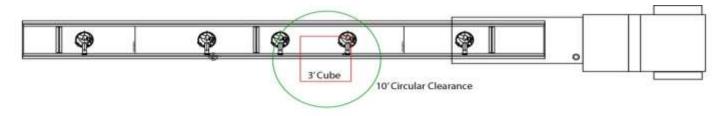
Class III - Fibers and Flyings

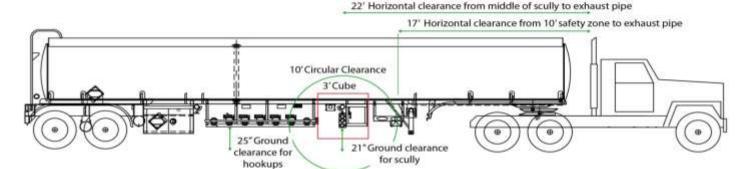
Divisions

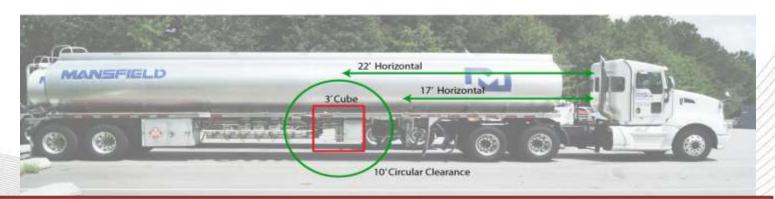
Division 1 - Normal Conditions

Division 2 - Abnormal Conditions

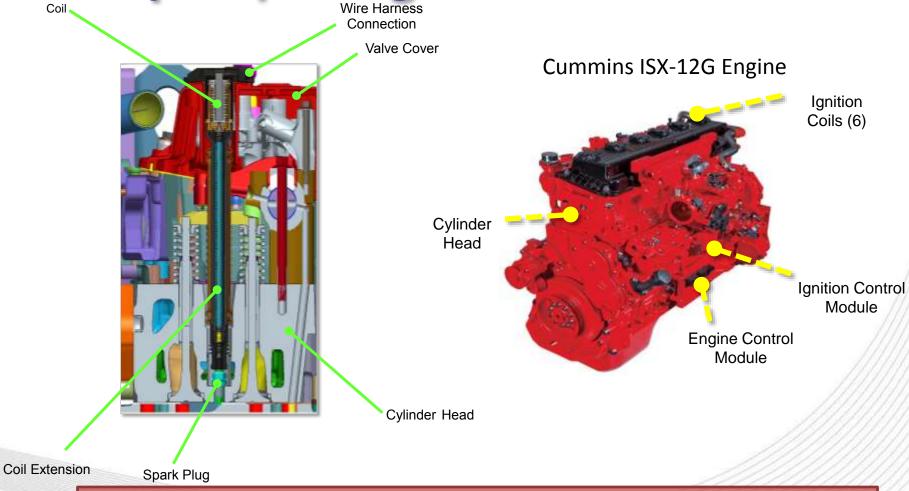
https://www.osha.gov/doc/outreachtraining/htmlfiles/hazloc.html


Key Safety Concerns


- Spark Ignited (SI) Engines as potential ignition source in a Hazardous Area
- Exhaust System Temperatures as auto-ignition source
- Potential for natural gas leaks from CNG or LNG tanks
- 4. Risks of retrofit modifications (vs. OEM)


Do SI Natural Gas engines increase risk relative to diesel CI engines?

Class I, Div. 2 Area



Exhaust/Engine Components well outside of Class I Area

#1 SI Spark/Arc Ignition Source

Design of SI NGV engines
No External high voltage wiring source of an arc or spark
Encapsulated design eliminates external spark potential

#2 Exhaust System Temperatures

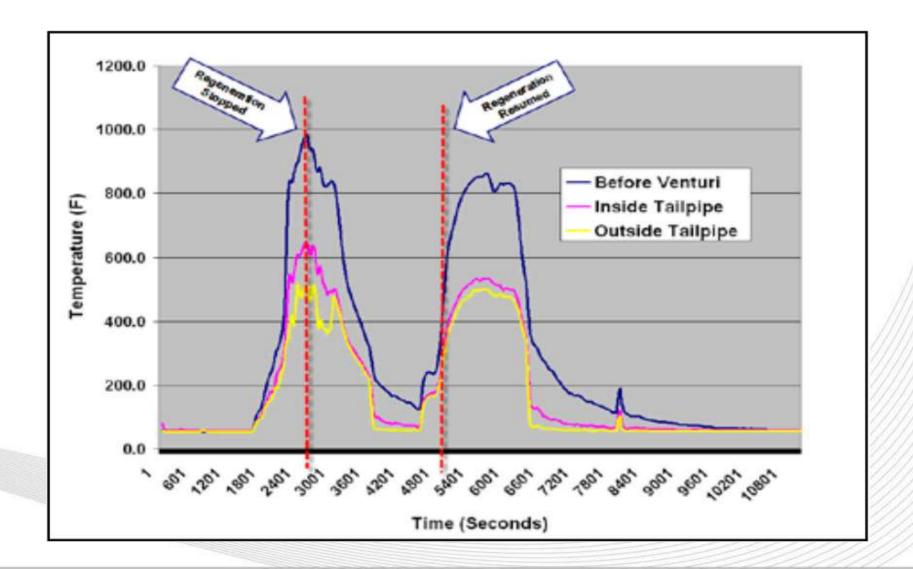
Do potentially higher Exhaust System Component Temperatures pose an increased risk of Auto-Ignition?

Factors

- Class I, Div. 2 Area location
- Laboratory vs. "Real World"
- Cool-down Rates
- Distance from heat source
- Temperature vs. Time delay

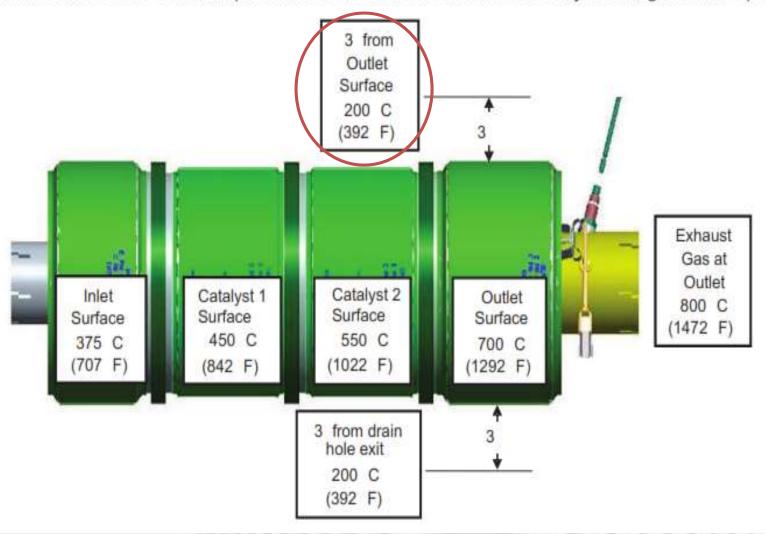
Exhaust System Temperatures

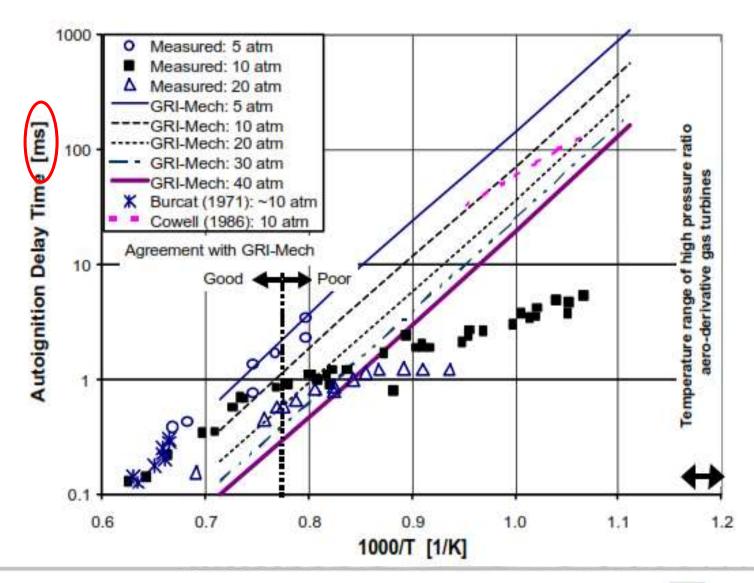
	Maximum Temperature (°C/°F)		
Parameter	Diesel	HPDI	Spark NGV
DPF skin temperature - <u>normal operation</u>	350/662	350/662	N/A
DPF skin temperature - active regeneration	360/680	360/680	N/A
Exhaust temp at DPF outlet - active regeneration	600/1112	600/1112	N/A
Exhaust temp at DFP outlet - failure mode	975/1787	975/1787	N/A
SCR catalyst skin temperature - <u>normal</u> <u>operation</u>	368/694	368/694	N/A
Exhaust temp at SCR catalyst outlet <u>- normal</u> <u>operation</u>	600/1112	600/1112	N/A
SCR catalyst skin temp - failure mode	325/617	325/617	N/A
Exhaust temp at SCR catalyst outlet - failure mode	800/1472	800/1472	N/A
Catalyst skin temperature - normal operation	N/A	N/A	700/1292
Exhaust temperature at catalyst outlet - normal operation	N/A	N/A	800/1472



Real-World Auto-Ignition

Material	Autoignition Temperature °F	Notes	
Diesel	350-625	Laboratory - ASTM	
Diesel	>1200	Heated catalytic converter. No ignition, test stopped at 1200 degrees F	
Diesel	950-1000	Heated pipe	
Diesel	1010-1125	Recessed stainless steel plate	
B100 (Biodiesel)	705-840	Recessed stainless steel plate and fluid spray	
B20 (Biodiesel)	980-1300		
E-diesel (Ethanol blend)	1265-1400		


Cool-down Rate


Temperature vs. Distance

Maximum Surface and Gas Temperatures of a Standard Insulated Catalyst during Normal Operations

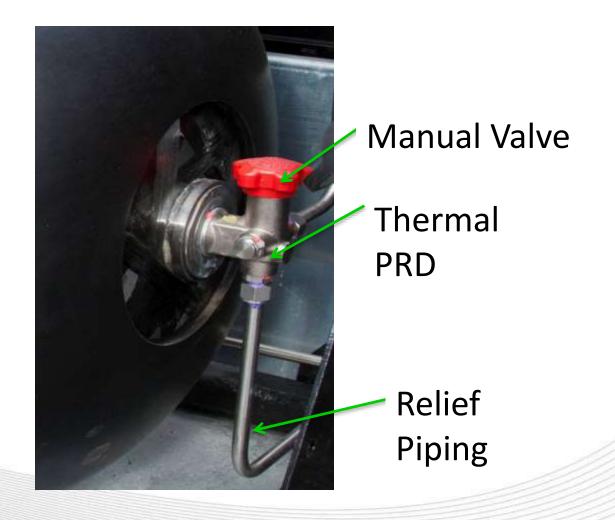
Autoignition Time Delay

Exhaust Temperature Mitigation

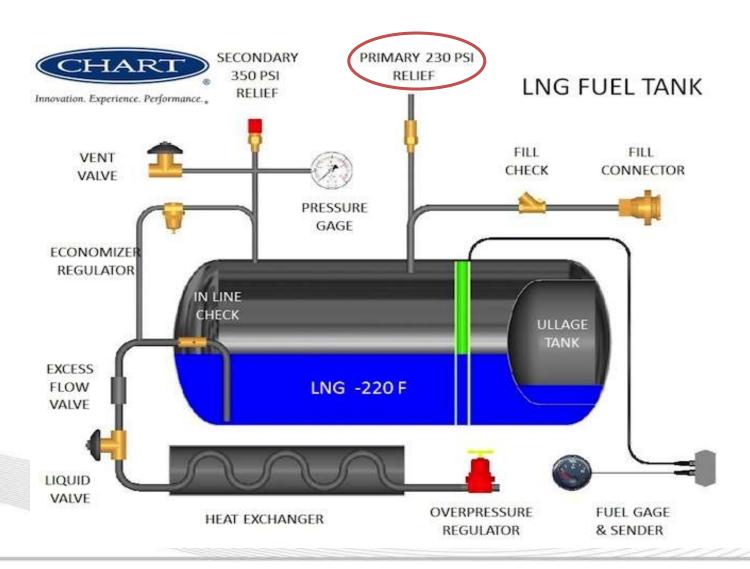
- Components outside of Class I, Div. 2 area
- Temperatures (both diesel and CNG)
 - Above laboratory auto-ignition temperatures
- Auto-ignition time delay insignificant w/ temp
- Real World Auto-Ignition well above ASTM
- Cool Down rates: High
- Temp vs. Distance: Large Gradient

Autoignition Risk is Comparable to Diesel

#3 Nat Gas Leak Potential


Will CNG or LNG Vent when "Under the Rack"?

- Cylinder Design, Testing, and Operation
- Thermal Relief Valve (CNG) @ 219°F
- CNG Odorized (can smell at 1/5 LEL)
- LNG has Methane detection system
- Pressure Relief (LNG)
- LNG Boil Off 7-10 days



CNG Thermal Pressure Relief Device

LNG Fuel Tank

Tank Leak Mitigation

- Design itself mitigates leak potential
- Testing and Periodic Inspection
- Odorant or Methane Detection in unlikely event of leak
- Neither LNG nor CNG tanks are designed to vent under normal operations at the loading rack.
 - CNG tank involved in a fire before the PRD operates
 - LNG truck parked at the rack for 7-10 days for pressure relief to lift

Conclusions

- Nat Gas engines no greater risk of spark
- Exhaust temperatures pose similarly small risk profile
- Low risk of tank failure:
 - Stringent design/testing standards
- OEM NGVs considered inherently safety designed and built

SI Natural Gas engines pose comparable risk compared to diesel CI engines

